

Wirebrush4SPAM

1

How to implement a plugin
in Wirebrus4SPAM

Wirebrush4SPAM

2

Wirebrush4SPAM

3

Table of contents

Basic concepts .. 4

Introduction ...4

Wirebrush4SPAM architecture ..5

Wirebrush4SPAM main concepts ...6

Plugin implementation ... 7

Plugin description ...7

Plugin implementation API ..8

Plugin implementation example ...14

Filter manipulation ... 21

Filter description ..21

Filter example ...8

Wirebrush4SPAM

4

1.

Basic concepts

Introduction ……… 4

Wirebrush4SPAM architecture …… 5

Wirebrush4SPAM main concepts ……… 6

 Introduction I.

Wirebrush4SPAM is an extreme efficient open source spam filtering framework and mid-

dleware. It design and functionalities are initially inspired in the SpamAssassin frame-

work, but it has been written from scratch in C language including a wide variety of im-

provements in order to reduce the spam filtering time and to enhance the filtering

framework personalization.

Figure 1. Wirebrush4SPAM operation processFigure 1 shows Wirebrush4SPAM main oper-

ation process. As described, the process is divided in four stages: (i) e-mail parsing, (ii)

rule execution, (iii) learning issues and, finally (iv) report generation.

Figure 1. Wirebrush4SPAM operation process

Whenever an email is received, the MTA (Mail Transfer Agent) sends it to the

Wirebrush4SPAM daemon (called wb4spamd). Below starts the filtering process. In the

Wirebrush4SPAM

5

first stage the middleware executes from all the EML parsers available only those re-

quired by the rules. In the next stage, the application runs (concurrently if it is possible)

all the filtering rules defined. The three stage is optional and, it will be activated only

when it is necessary to store the email. Finally, the last stage adds additional info to the

email to indicate the classification info belonging to the email.

 Wirebrush4SPAM architecture II.

Wirebrush4SPAM has been written in C programing language. Nevertheless its architec-

ture has been inspired in an object-oriented design where classes have been substituted

by modules implementing abstract data types.

Figure 2. Wirebrush4SPAM architecture

As we can see from Figure 2, key characteristics from the object-oriented paradigm (in-

cluding encapsulation and information hiding) have been ported to the Wirebrush4SPAM

architecture. As we can see wb4spam is the main program being able to load the C-Pluff

plugin architecture, initialize the core plugin and subsequently forward messages to it.

The core plugin is able to classify e-mails by evaluating rules included in a ruleset. For

the execution of each rule, the core plugin first obtains the message content by using a

parser_t data type and then execute a function_t to check the matching with the target

e-mail. In order to increase filtering speed, each parser_t is launched only when the filter

contains a rule that requires its usage, being executed only one time per message by

using a parsed contents caching scheme. Once Wirebrush4SPAM has classified the new

incoming message, the core plugin calls all registered eventhandler_t to notify the final

decision about the e-mail. In the proposed scheme, event handlers are the

Wirebrush4SPAM mechanism to support automatic learning processes.

Wirebrush4SPAM

6

 Wirebrush4SPAM main concepts III.

Wirebrush4SPAM contains three main concepts: parsers, filtering functions and event

listeners. They are modelled as extensions that can be connected with the core plugin

through the corresponding extension points. Therefore, a Wirebrush4SPAM plugin (except

the core) is composed by a set of parsers, filtering functions and event listeners sharing

some semantic or functional relationships.

Figure 3. Wirebrush4SPAM plugin architecture.

Figure 3 exemplifies the Wirebrush4SPAM plugin architecture by representing some

available plugins. In this context, Bayes plugin registers a filtering function and an event

listener used to support the learning requirements. Moreover, Wirebrush4SPAM also in-

cludes an EML parser plugin that contains header, full and body parsers used to extract

information and tokenize the corresponding parts of any e-mail represented in RFC2822

format.

Wirebrush4SPAM

7

2.

Plugin implementation

Plugin description ……… 7

Plugin implementation API …… 8

Plugin implementation example ……………………………………………………………………………………………………… 14

 Plugin description I.

Each spam detection and filtering technique available for Wirebrush4SPAM must be im-

plemented as a plugin. There are different types of plugins (i) static plugins and (ii) dy-

namic plugins.

In this context static plugins are those that not need to manage and manipulate dynamic

data structures. In contrast, dynamic plugins are those that handlers all king of dynamic

structures.

Figure 4. Plugin definition scheme.

Wirebrush4SPAM

8

Figure 4 includes a detailed schema of the Bayes plugin implementation. As we can see

from this figure, every plugin contains a descriptor file named plugin.xml that specifies

runtime features including (i) the plugin id, (ii) available extension points, (iii) imple-

mented extensions, (iv) a dynamic library file, (v) existing plugin dependences and (vi)

different user defined information. These extensions defined by a plugin are connected

with their corresponding extension points by some sentences included in the plugin de-

scriptor. As showed in Figure 4, Bayes plugin implements check_bayes filtering function

and bayes_learn event handler by extending the corresponding extension points. The

core plugin defines three extension points matching with the main concepts of

Wirebrush4SPAM platform: parsers, filtering functions and event listeners. For each ex-

tension point, an XML schema file (.xsd) should be created containing the parameters to

be included in a plugin descriptor (plugin.xml). Also, Figure 4 indicates Bayes plugin de-

pendences. Those dependences avoid plugin execution when at least one of the depend-

encies does not exist.

 Plugin implementation API II.

In order to facilitate the implementation, developing and deploying of new techniques

and plugins, Wirebrush4SPAM provides an API facility.

As shown in Figure 5, the API facility is composed by four basic data structures: (i) cache

(ii) linked list (iii) hashmap and finally (iv) the stack structure.

Figure 5. Wirebrush4SPAM API component diagram.

Next subsections describe thoroughly each API component.

Wirebrush4SPAM

9

II.I. Cache component

Cache is a component that transparently stores data so that future requests for that data

can be served faster. The data that is stored within a cache might be values that have

been computed earlier or duplicates of original values that are stored elsewhere. If re-

quested data is contained in the cache (cache hit), this request can be served by simply

reading the cache, which is comparatively faster. Otherwise (cache miss), the data has to

be recomputed or fetched from its original storage location, which is comparatively slow-

er. Hence, the greater the number of requests that can be served from the cache, the

faster the overall system performance becomes.

To be cost efficient and to enable an efficient use of data, caches are relatively small.

Nevertheless, caches have proven themselves in many areas of computing because ac-

cess patterns in typical computer applications have locality of reference. References ex-

hibit temporal locality if data is requested again that has been recently requested al-

ready. References exhibit spatial locality if data is requested that is physically stored

close to data that has been requested already.

Figure 6. Cache API diagram.

Figure 6 describes the functions and data types provided by the cache structure. The de-

scription of each method is described below.

Functions Description

newcache Initialize the cache data structure.

push_cache
Insert a new element in the cache. If the cache is full,

automatically removes the last inserted element.

peek_cache

Obtain the element from the cache. If the element ex-

ists returns CACHE_ELEMENT_FOUND, otherwise re-

turns CACHE_ELEMENT_MISSING

get_cache_size Returns the maximum cache size.

set_cache_size Modifies the cache size

free_cache
Free al the cache data structures created and all the

stored data.

Table 1. Cache methods description

Wirebrush4SPAM

10

II.II. Linked list component

¡Error! No se encuentra el origen de la referencia. shows the description of linked

list methods. Linked list is a data structure consisting of a group of nodes which together

represent a sequence. Under the simplest form, each node is composed of a datum and a

reference (in other words, a link) to the next node in the sequence; more complex vari-

ants add additional links. This structure allows for efficient insertion or removal of ele-

ments from any position in the sequence.

Linked lists are among the simplest and most common data structures. They can be used

to implement several other common abstract data structures, including stacks, queues,

associative arrays, and symbolic expressions, though it is not uncommon to implement

the other data structures directly without using a list as the basis of implementation.

The principal benefit of a linked list over a conventional array is that the list elements can

easily be inserted or removed without reallocation or reorganization of the entire struc-

ture because the data items need not be stored contiguously in memory or on disk.

Linked lists allow insertion and removal of nodes at any point in the list, and can do so

with a constant number of operations if the link previous to the link being added or re-

moved is maintained during list traversal.

Figure 7. Linked list API diagram

On the other hand, simple linked lists by themselves do not allow random access to the

data, or any form of efficient indexing. Thus, many basic operations — such as obtaining

the last node of the list (assuming that the last node is not maintained as separate node

reference in the list structure), or finding a node that contains a given datum, or locating

the place where a new node should be inserted — may require scanning most or all of

the list elements.

Wirebrush4SPAM

11

Below Table 2 shows the description of all methods included in the linked list API.

Functions Description

newlinkedlist Initialize the linked list data structure.

addbeginlist Insert the element at the beginning of the list.

addendlist Inserts the elements at the end of the list.

addorder

Insert the element ordered in the list. This method

needs a comparison function for indicating the correct

position of the element in the list.

linklist_iterate_data
Iterator for transverse all the elements stored in the

linked list

get_first
Gets the element located at the first position in the

linked list.

get_last
Gets the element located at the last position in the

linked list.

removefirst
Removes the element located at the first position in the

linked list.

removelast Removes the last element in the linked list.

freelist Free al the linked list data structure.

Table 2. Linked list API methods description

II.III. Stack component

Another component provided by the Plugin Implementation API is the stack. Stack is a

last in, first out (LIFO) abstract data type and linear data structure. A stack can have any

abstract data type as an element, but is characterized by only three fundamental

operations: push, pop and peek. The push operation adds a new item to the top of the

stack, or initializes the stack if it is empty. The pop operation removes an item from the

top of the stack. A pop either reveals previously concealed items, or results in an empty

stack, but if the stack is empty then it returns a NULL element. The peek operation gets

the data from the top-most position and returns it to the user without deleting it. The

same NULL element return state can also occur in peek operation if stack is empty.

Wirebrush4SPAM

12

Figure 8. Stack structure diagram

A stack is a restricted data structure, because only a small number of operations are

performed on it. The nature of the pop and push operations also means that stack

elements have a natural order. Elements are removed from the stack in the reverse

order to the order of their addition: therefore, the lower elements are those that have

been on the stack the longest.

The description of all the functions provided in the stack library are shown in Table 3.

Functions Description

newstack Initialize the stack data structure.

push_item Insert the element at the top of the stack.

peek_item Returns and deletes the element positioned at the top

of the stack (returns the last inserted element).

pop_item Returns (but not deletes) the element at the top of the

stack.

stack_iterate_elements Loops through all the elements stored in the stack

structure.

free_stack Liberates all the elements stored in the stack structure.

Table 3. Stack structure diagram

II.IV. Hashmap component

Hashmap is a data structure that uses a hash function to map identifying values, known

as keys (e.g., a person's name), to their associated values (e.g., their telephone num-

ber). Thus, a hash table implements an associative array. The hash function is used to

transform the key into the index (the hash) of an array element (the slot or bucket)

where the corresponding value is to be sought.

Ideally, the hash function should map each possible key to a unique slot index, but this

ideal is rarely achievable in practice (unless the hash keys are fixed; i.e. new entries are

never added to the table after it is created). Instead, most hash table designs assume

that hash collisions—different keys that map to the same hash value—will occur and

must be accommodated in some way.

Wirebrush4SPAM

13

In a well-dimensioned hash table, the average cost (number of instructions) for each

lookup is independent of the number of elements stored in the table. Many hash table

designs also allow arbitrary insertions and deletions of key-value pairs, at constant aver-

age cost per operation.

In many situations, hash tables turn out to be more efficient than search trees or any

other table lookup structure. For this reason, they are widely used in many kinds of com-

puter software, particularly for associative arrays, database indexing, caches, and sets.

Figure 9 describes thoroughly the methods included in the hashmap component.

Figure 9. Hashmap structure diagram

The description of each implemented method is described as shown in Table 4.

Functions Description

hashmap_new Initialize the hashmap data structure.

hashmap_iterate

Iterates through all the data items stored in the

hashmap. The function passed as parameter must be

f(item,data) .

hashmap_iterate_elements

Iteration function to transverse thoroughly all the ele-

ments (both item and key) stored in the hashmap. The

function received as parameter must be f(item1, data,

key)

hashmap_iterate_three

Function that allows iterating through all the key ele-

ments stored in the hashmap. The function received as

parameter must be f(item1,item2,key)

hashmap_put Insert the element into the hashmap.

hashmap_remove Deletes the hashmap the specified element from

hashmap_free
Deletes the hashmap structure, but does not delete the

elements stored in the hashmap.

Table 4. Hashmap functions description

Wirebrush4SPAM

14

 Plugin implementation example III.

The sections before, describes theoretically the plugin architecture and the API provided

by the plugin platform. In this section we will explain how to implement a new plugin

from scratch.

We divided for clarification the implementation of a plugin for Wirebrush4SPAM into 5

stages.

For this example, the reference path will be Wirebrush4SPAM main path. Figure 10 shows

the directory tree membership.

Figure 10. Wirebrush4SPAM directory tree

III.I. Stage 1: Plugin implementation

First of all, it is necessary to implement the new plugin. As commented above

Wirebrush4SPAM is able to manage two types of plugins (i) static plugins and (ii) dynam-

ic plugins. Therefore, in this tutorial, we will implement both plugin types.

In this example static_plugin will be the folder name of the static plugin, and dynam-

ic_plugin will be the name of the dynamic plugin folder.

Static plugin implementation

The figure below shows the implementation of a plugin that prints “Hello world” in the

command prompt.

01 #include <stdio.h>
02 #include <cpluff.h>
03 #include "core.h"
04
05 /**
06 * This plugin always returns 0 and prints hello world in the command prompt.
07 */

Wirebrush4SPAM

15

08
09 static int static_hello (void *_data, void *msg, char *params, char *flags) {
10 printf ("Hello world.\n");
11 return 0;
12 }
13
14 /* --
15 * Exported classifier information
16 * --*/
17
18 CP_EXPORT function_t es_uvigo_ei_static_hello = { NULL, static_hello, NULL };
19

Figure 11. Static plugin implementation example

As shown in line 10 the function must return a value. The possible values are: (i) zero if

the function does not match or (ii) one if the function matches and therefore the score

associated to the triggered rule will be added. In this example we consider to return a

zero.

Dynamic plugin implementation

This plugin has the same behaviour as the previous plugin with the exception that the

printed string must be assigned dynamically.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

#include <string.h>
#include <stdio.h>
#include <cpluff.h>
#include "core.h"

struct plugin_data{
 function_t *funcs;
 cp_context_t *ctx;
 eventhandler_t *events;
 char *plugin_string;
};

static void *create(cp_context_t *ctx){
 struct plugin_data *retval;
 retval=malloc(sizeof(struct plugin_data));
 retval->ctx=ctx;
 return retval;
}

static int start(void *d) {
 struct plugin_data *data=(struct plugin_data *)d;
 cp_context_t *ctx;
 if (data!=NULL)
 data->plugin_string = malloc(sizeof(char)*12);

Wirebrush4SPAM

16

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 sprintf(data->plugin_string,"%s","hello_world");
 else return CP_ERR_RESOURCE;

 data->funcs=(function_t *)malloc(sizeof(function_t));
 data->funcs->function=&dynamic_hello;
 data->funcs->conf_function=NULL;
 data->funcs->data=data;

 data->events=(eventhandler_t *)malloc(sizeof(eventhandler_t));
 data->events->function=&autolearn_hello_world;
 data->events->data=data;
 data->events->parser_name="body";

 if ((cp_define_symbol(ctx, "es_uvigo_ei_dynamic_hello", data->funcs)==CP_OK) &&
 (cp_define_symbol(ctx, "es_uvigo_ei_autolearn_hello_world", data->events)==CP_OK)))
 return CP_OK;
 else return CP_ERR_RESOURCE;
}

static void stop(void *d) {
 struct plugin_data *data=(struct plugin_data *)d;
 if(data->plugin_string!=NULL) free(data->plugin_string);
}

static void destroy(void *d) {
 struct plugin_data *data=(struct plugin_data *)d;
 free(data->funcs);
 free(data->events);
 free(data);
}

static int dynamic_hello(void *_data, void *content, char *params, const char *flags){
 printf("%s\n", data->plugin_string);
}

static void autolearn_spam_hunting(void *_data, void *_content, const int isspam){
 printf("Executing autolearn hello world...\n");
}

CP_EXPORT cp_plugin_runtime_t dynamic_plugin_runtime_functions={create,start,stop,destroy};

Figure 12. Dynamic plugin implementation example

Figure 12 shows an example of a dynamic plugin implementation. As we can observe,

plugins using internal data structures are more complex to define and require a

cp_plugin_runtime export sentence to identify the source to execute, create, start, stop

and destroy data structures. Moreover, required exports for function_t, parser_t or

eventhandler_t variables should be defined inside the start function as showed in lines 28

to 36.

Green areas means the code is common (an also required) in all plugins. Moreover blue

areas means optional code and can only be implemented depending on plugin needs.

Wirebrush4SPAM

17

Also, Wirebrush4SPAM platform allows defining one function per plugin that should be

executed at the end of each email classification. These functions called eventhandlers

and usually are used to implement some learning techniques.

The main difference between static plugin is the need of defining four new functions (i)

create, (ii) start (iii) stop and (iv) destroy. The following explains the operation of each

one.

i. Create function: the initialization function called to create a new plug-in runtime

instance. The initialization function initializes and returns an opaque plug-in in-

stance data pointer which is then passed on to other control functions. This data

pointer should be used to access plug-in instance specific data. For example, the

context reference must be stored as part of plug-in instance if the plug-in runtime

needs it. On failure, the function must return NULL.

ii. Start function: these start function called to start a plug-in instance. The start

function must return zero (CP_OK) on success and non-zero on failure. If the start

fails then the stop function (if any) is called to clean up plug-in state.

iii. Stop function: the stop function is called to stop a plugin instance. This function

must cease all plug-in runtime activities. The stop function should release any ex-

ternal resources hold by the plug-in. Dynamically resolved symbols are automati-

cally released and dynamically defined symbols and registered run functions are

automatically unregistered after the call to stop function.

iv. Destroy function: these destroy function is called to destroy a plug-in instance.

This function should release any plug-in instance data. The plug-in is stopped be-

fore this function is called.

III.II. Stage 2: Plugin descriptor

A plug-in descriptor is an XML document describing a plug-in. It includes information

about the contents of the plug-in, the features provided by the plug-in, plug-in version

information and static dependencies of the plug-in. Most of the elements are optional.

Most of the descriptor information described here is available to software

via cp_plugin_info_t structure. The plugin descriptor must be located in the plugin direc-

tory as plugin.xml.

Static plugin descriptor

Figure 13 contains the source code belonging to the descriptor of static_plugin. As previ-

ously mentioned, the descriptor file is required to link the exported extensions to the

core extension points.

01
02
03
04

<plugin
 id="es.uvigo.ei.static_plugin"
 version="0.1"
 name="Static Plugin"

http://www.c-pluff.org/reference/c-api/structcp__plugin__info__t.html

Wirebrush4SPAM

18

05
06
07
08
09
10
11
12
13
14
15
16
17

 provider-name="HOW-TO FOR STATIC PLUGIN">
 <requires>
 <c-pluff version="0.1"/>
 <import plugin="es.uvigo.ei.core" version="0.1"/>
 </requires>
 <runtime library="libstatic_plugin"/>
 <extension
 point="es.uvigo.ei.core.functions"
 name="static_hello"
 cfg=""
 function="es_uvigo_ei_static_hello"
 />
</plugin>

Figure 13. Plugin descriptor for static_plugin

It is important to use this descriptor as a template for all the static plugins implemented.

As commented in previous sections, all descriptors are validated by a plugin scheme

(xsd).

Dynamic plugin descriptor

Figure 14 contains the source code belonging to the descriptor of dynamic_plugin. As we

can see, plugin descriptors for dynamic plugins are slightly more complicated than plugin

descriptor for static plugins.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<plugin
 id="es.uvigo.ei.dynamic_plugin"
 version="0.1"
 name="Dynamic Plugin"
 provider-name="HOW-TO DYNAMIC PLUGIN">
 <requires>
 <c-pluff version="0.1"/>
 <import plugin="es.uvigo.ei.core" version="0.1"/>
 </requires>
 <runtime library="libdynamic_plugin"
funcs="dynamic_plugin_runtime_functions"/>
 <extension
 point="es.uvigo.ei.core.functions"
 name="dynamic_hello"
 cfg=""
 function="es_uvigo_ei_dynamic_hello"
 />
 <extension
 point="es.uvigo.ei.core.eventhandlers"
 name="autolearn_hello_world"
 cfg=""
 eventhandler="es_uvigo_ei_autolearn_hello_world"
 />
</plugin>

Figure 14. Plugin descriptor for dynamic plugin

Wirebrush4SPAM

19

III.III. Stage 3: Plugin compiling issues

In this subsection we present the Makefile for both plugins. The Makefile should define a

dynamic library. This library it is necessary by the plugin framework for linking.

This Makefiles are only an indicative and cannot be used as a template for other plugins.

Makefile are a complex rule-compiling file and is only valid for the application witch was

build.

Figure 15 shows the Makefile structure for the static plugin implemented. As we can ob-

serve, lines 7 to 10 defines the dynamic library needed for the plugin platform.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

CC=cc
OPTS=-Wall -O2 -g -fPIC -I../../cpluff/include -I/usr/include -I../core
OPTSLIB=-shared -W1,-soname,libfalse_plugin.so.0 -I../../cpluff/include -
I/usr/include -I../core -L../../cpluff/lib -L/usr/lib -L/lib -L../core
LIBS=-lcpluff -lexpat -lpthread -ldl -lc

libstatic_plugin.so : static_plugin.o
 gcc $(OPTSLIB) -o libstatic_plugin.so.0 static_plugin.o $(LIBS)
 ln -sf libstatic_plugin.so.0 libstatic_plugin.so
 ln -sf libstatic_plugin.so.0 libstatic_plugin.so.1

static_plugin.o :
 $(CC) $(OPTS) $(LIBS) -c static_plugin.c

clean : rm *.o *.so *.so.?

Figure 15. Makefile for static_plugin

Figure 16, describes the structure of the Makefile used to compile the dynamic_plugin

implantation. As we can see the structure is similar to the static one.

01
02
03
04
05
06
07
08
09
10
11
12
13
14

all: dynamic_plugin

dynamic_plugin:
 $(CC) $(CFLAGS) -shared -W1,-soname,libdynamic_plugin.so.0 dyna-
mic_plugin.o -o libdynamic_plugin.so.0 $(OPTSLIB) $(LIBS)
 ln -sf libdynamic_plugin.so.0 libdynamic_plugin.so
 ln -sf libdynamic_plugin.so.0 libdynamic_plugin.so.1

dynamic_plugin.o:
 $(CC) $(CFLAGS) -c dynamic_plugin.c $(OPTSLIB) $(LIBS) -o dyna-
mic_plugin.o

clean : rm *.o *.so *.so.?

Figure 16. Makefile for dynamic_plugin

Wirebrush4SPAM

20

III.IV. Stage 4: Registering plugin path

Finally, it is necessary to instruct Wirebrush4SPAM plugin platform the plugin path. To

accomplish this task, simply modify the plugin.list file adding at the end, the path for the

new plugins.

01
02
03
04
05
05
06
08
09
10
11

plugins/core
plugins/axl_plugin
plugins/regex_plugin
plugins/spf_plugin
plugins/pcre_regex_plugin
plugins/bayes_plugin
plugins/false_plugin
plugins/eml_structure_parser
plugins/rxl_plugin
plugins/static_plugin
plugins/dynamic_plugin

Figure 17. Default plugin.list content

Wirebrush4SPAM

21

3.

Filter manipulation

Plugin description ……… 21

Filter example ……… 23

 Filter description I.

As we comment in previous sections, Wirebrush4SPAM is not a filter, is an extreme effi-

cient middleware and framework for execution and developing of spam filters.

Any Wirebrush4SPAM filter is defined by set of scored rules and a global threshold called

required_score. Each rule is composed by a boolean expression (used as trigger) and

its associated individual score. Following this simple structure, an e-mail is classified as

spam when the sum of individual scores from triggered rules is greater or equal than the

value of required_score.

As shown in next figure, Wirebrush4SPAM rule definition format is closer than

SpamAssassin one. Under this scenario, it is intended that the migration of

Wirebrush4SPAM to SpamAssassin is as simple as possible.

Wirebrush4SPAM filters are defined in *.cf files located in the filter directory. In order to

build a filter, these files should contain all rules and the required_score threshold. Fig-

ure 18 shows an example of a Wirebrush4SPAM filter.

01
02
03
04
05
06
07
08
09
10
11
12
13

body BAYES_00 check_bayes(0.00, 0.01)
describe BAYES_00 Bayes between 0 and 0.01
score BAYES_00 -2

body BAYES_05 check_bayes(0.01, 0.05)
describe BAYES_05 Bayes between 0.01 and 0.05
score BAYES_05 -1

body BAYES_20 check_bayes(0.05, 0.20)
describe BAYES_20 Bayes between 0.05 and 0.20
score BAYES_20 -0.5

body BAYES_40 check_bayes(0.20, 0.40)

01
02
03

<parser_type> <rulename> <ruledefinition>
score <rulename> <rulescore>
[describe <rulename> <ruledescription>]

Wirebrush4SPAM

22

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

describe BAYES_40 Bayes between 0.20 and 0.40
score BAYES_40 -0.25

body BAYES_50 check_bayes(0.40, 0.60)
describe BAYES_50 Bayes between 0.40 and 0.60
score BAYES_50 0

body BAYES_60 check_bayes(0.60, 0.80)
describe BAYES_60 Bayes between 0.60 and 0.80
score BAYES_60 0.25

body BAYES_80 check_bayes(0.80, 0.95)
describe BAYES_80 Bayes between 0.80 and 0.95
score BAYES_80 1

body BAYES_95 check_bayes(0.95, 0.99)
describe BAYES_95 Bayes between 0.95 and 0.99
score BAYES_95 2

body BAYES_99 check_bayes(0.99, 1.00)
describe BAYES_99 Bayes between 0.99 and 1.00
score BAYES_99 3

header HAS_VIAGRA_ON_BODY eval("[vV][iI?1!][aA][gG][rR][aA]")
describe HAS_VIAGRA_ON_BODY Contains references to viagra in content
score HAS_VIAGRA_ON_BODY 1

body Levitra_ON_SUBJECT_PCRE pcre_eval_header("Subject","(?i:levitra)")
describe Levitra_ON_SUBJECT_PCRE Contains references to levitra in Subject
score HAS_LEVITRA_ON_SUBJECT 1

body SPF_PASS_3 spf_pass(3)
describe SP_PASS_3 If third header of e-mail pass the SPF
score SPF_PASS_3 -4

body RWL_DNSWL rxl_check("list.dnswl.org")
describe RWL_DNSWL If the third header pass the RWL
domain RWL_DNSWL @udc.es @uvigo.es @usc.es
score RWL_DNSWL -2

body RWL_DNSWL_OCTECT rxl_check("list.dnswl.org",3,10)
describe RWL_DNSWL_OCTECT If third octet of first header has value 10.
score RWL_DNSWL_OCTECT -3

#Required score to classify a message as spam
required_score 3

#Activate SFE
lazy_evaluation -1;

Figure 18. Example of Wirebrush4SPAM bayes filter

As showed in Figure 18, the filter involves the execution of a bayes scheme to compute

the probability of a message being spam. The proposed filter uses some intervals for the

bayes probability and assigns a score for each interval (lines 02, 06, 10, …, to 34). More-

over, it also adds some scores to the target message when it contains the word viagra

with different varia-tions (line 38) or when the subject of the e-mail contains the word

Wirebrush4SPAM

23

Levitra (line 42). These two rules use a different regular expression API to test the speci-

fied conditions. The example filter also checks SPF records and a RBL/RWL searching

scheme.

 Filter example II.

Finally, it is necessary to add the filter those rules that activate the implemented plugin.

01
02
03
04
05
06
07

body SIMPLE_PLUGIN_EXAMPLE static_hello()
describe SIMPLE_PLUGIN_EXAMPLE Executes static plugin implementation example
score SIMPLE_PLUGIN_EXAMPLE 5

body DYNAMIC_PLUGIN_EXAMPLE dynamic_hello()
describe DYNAMIC_PLUGIN_EXAMPLE Executes dynamic plugin implementation
score DYNAMIC_PLUGIN_EXAMPLE 3

As we can see from the figure above in the lines 02 and 05, the function name must be

the same as the defined in the plugin.xml definition scheme.

